欢迎访问杭州仟诺生物科技有限公司网站!
销售咨询热线:
17758005454
产品目录
您的位置: 网站首页 >> 技术文章 >> 接上期,30年前的无血清培养基里都含啥

接上期,30年前的无血清培养基里都含啥

发布日期: 2019-08-15
浏览人气: 1535

三、无血清培养基
1979年神经细胞培养出现了一个重要进展,用化学添加剂即可维持神经细胞存活与生长而不需要在培养基中添加血清。其工作基础是用合适的激素、营养物和促贴壁的物质的组合置换培养基中的成分,后找到了适合大多数细胞培养的试剂配方,该配方称为N2,专门用于神经细胞培养,早是用在B104大鼠神经母细胞瘤细胞系的培养。它的基础培养基是1:1的DMEM与H12的混合液,添加了胰岛素、转铁蛋白、腐胺和硒。胰岛素和胰岛素样生长因子对于大多数类型细胞的存活和生长有重要作用,硒是谷胱甘肽产生的合作因子,可能有助于过氧化物和超氧化物的水解,有报道说还能防止细胞的光照损伤。随后的其他配方如N1N3则含有较低浓度的转铁蛋白。

未料到的是上述配方构成的培养基可以支持神经母细胞瘤细胞系快速增殖,随后又发展了能支持原代培养的各种神经元生长的培养基,这种培养基在许多实验室里已取代了有血清培养。在某些培养方案中,细胞直接进入无血清培养,这样的培养基可以消除来自血清的不均一性。更为重要的是,它们可用来检测生长因子以及其他促进神经元存活或生长的因子,或者用来检测那些可保护神经元免遭环境毒物损伤的制剂。于神经元的培养基在某些培养环境中还可以减低非神经元细胞的增殖,故可使神经元纯化。

血清中含有的组分,例如血清蛋白,可作为代谢毒物清除剂使用并能聚集于培养基中。当缺乏这些成分时,如神经元在无血清培养基中生长时,特别容易为过氧化物及自由基伤害,这已被许多研究者注意到了。过氧化物酶以及超氧化物歧化酶可阻止培养基中过氧化物和超氧化物的累积,有报道讲可以促进低密度培养细胞的存活。有学者发现细胞存活可为氧分压的下降而促进。因而,无血清培养基的配方常含有抗氧化剂的试剂。例如,维生素E和丙酮酸,可作为过氧化物清除剂使用。上述这些影响在高密度培养时变小,特别是神经元与胶质共培养时,它们可以吸收和代谢神经元毒性物质如谷氨酸。

应该注意,尽管无血清培养基是有化学限定性的,但在培养过程中它仍有变动,培养起始时可能有些物质缺乏,而后细胞的产物可能积累,从而使培养基的成分改变。这其实是有另一方面的好处,即条件培养基(已培养过细胞的培养基)的形成,条件培养基常常用来增加神经元和胶质细胞的发育。

生长因子绝大多数哺乳类胚胎神经元有严格的营养要求,若不能提供适宜的生长因子或合适的因子组分,将会使绝大多数神经元在体外培养的数天中死亡。解决这一问题有两条思路,一是让培养细胞提供自己的营养因子,二是在培养基中加入纯的生长因子。如果细胞混合物能在高密度时生长,所需的生长因子便会积累到可观的数值,尤其当培养基很少变化时。若某种细胞混合物生长时有很少的营养需求,可保持培养基在一段时间里不作任何变动,以使营养(生长)因子积累,而后促使所需要的细胞类型能够生长。但是,这种对营养(生长)因子自身倚赖性亦有弊端,因为通常在混合细胞群体中细胞很难有同比例增殖,某些细胞会因生长条件的贫乏而受限制。另外,这种方法只能进行相当高密度的细胞培养。因为培养基的条件在细胞的较低密度时变的不够有效。不过某些时候纯化神经元群体的低密度培养可用条件培养基(经过了高密度培养)进行,或在胶质上生长的神经元所用过的培养基来支持。

满足神经元营养需求的第二条途径是向培养基中加入生长因子。通常用于组培的通用适宜因子是神经生长因子NGF。不过,只有少数对这种蛋白质有反应的细胞类型的细胞才能生长。

许多PNS类型的神经元在离体状态时表现出简单的营养需求,只需提供单一的营养因子就足以使其在低密度时增殖。例如,大鼠交感神经元仅需NGF即能存活,在其生存期间,这些神经元可在严格局限条件下生长好几个月(即在无血清培养基中、或缺乏胶质细胞、或在化学限定基质上)。有证据表明NGF是活体中交感神经元存活的生理调节因子。然而,交感神经元也对来自胶质细胞的神经营养因子(GDNF)有反应,还有NT3、LIF与CNTF也对其有作用。在不产生GDNF或NT3的动物中,交感神经元会有损伤。在离体与活体营养需求之间的差别或许可以用在不同环境中NGF含量和分布的不同来解释,培养中的NGF弥散在整个环境中,而在活体内,大部分区域的含量是有限的。因此,NGF的重要性在于其合适的浓度。尽管在大多数实验中已经习惯了营养因子的大效应使用量,其他营养因子的协同效应在亚优剂量下更容易观察到。此外,高浓度的营养因子可使细胞更能抵抗毒剂以及其他压力。相应的,低浓度的营养因子可能用来检查表现型,例如对自由基或氨基酸的毒性刺激剂量的反应。有许多其他的PNS培养系统只需单一营养因子就可使有实用价值的细胞保持在一定比例,广为人知的有雏鸡睫状自主神经节神经元和大鼠背根神经节感觉神经元。不过,这些模型也有局限性。例如,培养中的睫状神经节的神经元加入CNTF时,超过90%的神经元能存活一个很长时期,但并未有迹象表明它属于内源的靶细胞来源的营养因子,而是有争论的相关分子,GPA,扮演了这一角色。大鼠背根神经节含有好几种细胞群体,其中小细胞群、包括nocioceptive cell,对NGF有反应,但其他神经元,例如大细胞群中的proprioception 却对不同的神经营养因子有反应。因此,在大多条件下培养物的生长并不能忠实反映亲代群体的所有特性,这一问题在CNS的细胞培养中特别突出,因为已有的经验表明,没有一种培养基能适合于所有类型及亚类的神经细胞的生长。

现有的证据已表明,CNS神经元的营养需求比PNS的更复杂。对脊髓运动神经元与视网膜节细胞神经元的研究表明,这些神经元与外周神经元相比能对更为广泛的营养因子起反应。例如,至少发现了15种不同的分子可在离体条件下增加神经元的存活。而且,已观察到运动神经元与视网膜对任何单独的营养因子的存活反应,与PNS中所观察到的典型反应相比,都要小得多。因此,大多数影响运动神经元及视网膜节细胞的营养因子仅仅只能支持神经元的亚群,而神经元的达到一定存活要求诸多因子的结合。在视网膜节细胞的培养中,因子的合适组合(如BDNF、CNTF、IGF、bFGF)包括了来自不同生长因子家族的代表。这一结果的普遍性尚待进一步的证实,但敲除单一的营养因子基因之后,没有表现出对CNS大多类群的神经元的存活产生太大影响,这一观察与上述的事实是一致的。现已知少突胶质细胞的长期存活也需要众多营养因子的相互作用。

分享到:
版权所有©2018 杭州仟诺生物科技有限公司 备案号:浙ICP备18056619号-1
  • 扫一扫,关注我们

Baidu
map